Speciation: a Case Study in Symmetric Bifurcation Theory

نویسنده

  • Ian Stewart
چکیده

Symmetric bifurcation theory is the study of how the trajectories of symmetric vector fields behave as parameters are varied. We introduce some of the basic ideas of this theory in the context of dynamical system models of speciation in evolution. Abstractly, these models are dynamical systems that are equivariant under the natural permutation action of the symmetric group SN on R kN for some integers N, k ≥ 1. The general theory, which is group-theoretic in nature, makes it possible to analyse such systems in a systematic manner. The results explain several phenomena that can be observed in simulations of specific equations. In particular, in steady-state bifurcation, primary branches involve bifurcation to two-species states; such bifurcations are generically jumps; and the weighted mean phenotype of the organisms changes smoothly, whereas the standard deviation jumps. In particular, classical mean-field genetics, which focusses on allele proportions in the population, cannot detect this kind of speciation event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of the Rimmer Bifurcation of Symmetric Fixed Points of Reversible Diffeomorphisms

We prove that the study of Rimmer bifurcation of symmetric fixed points in two–dimensional discrete reversible dynamical systems can be achieved analysing either bifurcation of critical points of a symmetric Hamiltonian function or the bifurcation of symmetric equilibrium points for a nonconservative reversible vector field. We give the normal forms for generating functions of area preserving r...

متن کامل

On the bifurcation curve for an elliptic system of FitzHugh-Nagumo type

We study a system of partial differential equations derived from the FitzHugh-Nagumo model. In one dimension solutions are required to satisfy zero Dirichlet boundary conditions on the interval Ω = (−1, 1). Estimates are given to describe bounds on the range of parameters over which solutions exist; numerical computations provide the global bifurcation diagram for families of symmetric and asym...

متن کامل

Exact multiplicity of solutions to perturbed lo- gistic type equations on a symmetric domain

We apply the imperfect bifurcation theory in Banach spaces to study the exact multiplicity of solutions to a perturbed logistic type equations on a symmetric spatial domain. We obtain the precise bifurcation diagrams.

متن کامل

Effects of the Bogie and Body Inertia on the Nonlinear Wheel-set Hunting Recognized by the Hopf Bifurcation Theory

Nonlinear hunting speeds of railway vehicles running on a tangent track are analytically obtained using Hopf bifurcation theory in this paper. The railway vehicle model consists of nonlinear primary yaw dampers, nonlinear flange contact stiffness as well as the clearance between the wheel flange and rail tread. Linear and nonlinear critical speeds are obtained using Bogoliubov method. A compreh...

متن کامل

The (1 −E)-transform in combinatorial Hopf algebras

We extend to several combinatorial Hopf algebras the endomorphism of symmetric functions sending the first power-sum to zero and leaving the other ones invariant. As a “transformation of alphabets”, this is the (1 − E)-transform, where E is the “exponential alphabet,” whose elementary symmetric functions are en = 1 n! . In the case of noncommutative symmetric functions, we recover Schocker’s id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004